skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sudusinghe, Chamika"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Advances in chip manufacturing technologies have enabled computer architects to utilize System-on-Chip (SoC) to integrate the intellectual property cores as well as other components. Network-on-Chip (NoC) is widely used to fulfill communication requirements in SoC architectures. Securing NoC is vital for designing trustworthy SoCs. Eavesdropping attacks can exploit NoC vulnerabilities to extract secret information. In this paper, we propose a machine learning based detection of eavesdropping attacks. Our machine learning models are trained offline and have been used for runtime detection with a collective decision making strategy. Experimental results demonstrate that our approach can provide high accuracy with minimal overhead. 
    more » « less
  2. State-of-the-art System-on-Chip (SoC) designs consist of many Intellectual Property (IP) cores that interact using a Network-on-Chip (NoC) architecture. SoC designers increasingly rely on global supply chains for obtaining third-party IPs. In addition to inherent vulnerabilities associated with utilizing third-party IPs, NoC based SoCs enable attackers to exploit the distributed nature of NoC and its connectivity with various IPs to launch a plethora of attacks. Specifically, Denial-of-Service (DoS) attacks pose a serious threat in degrading the SoC performance by flooding the NoC with unnecessary packets. In this paper, we present a machine learning-based runtime monitoring mechanism to detect DoS attacks. The models are statically trained and used for runtime attack detection leading to minimum runtime performance overhead. Our approach is capable of detecting DoS attacks with high accuracy, even in the presence of unpredictable NoC traffic patterns caused by various application mappings. We extensively explore machine learning models and features to provide a comprehensive study on how to use machine learning for DoS attack detection in NoC-based SoCs. 
    more » « less
  3. null (Ed.)
    Malicious software, popularly known as malware, is a serious threat to modern computing systems. A comprehensive cybercrime study by Ponemon Institute highlights that malware is the most expensive attack for organizations, with an average revenue loss of $2.6 million per organization in 2018 (11% increase compared to 2017). Recent high-profile malware attacks coupled with serious economic implications have dramatically changed our perception of threat from malware. Software-based solutions, such as anti-virus programs, are not effective since they rely on matching patterns (signatures) that can be easily fooled by carefully crafted malware with obfuscation or other deviation capabilities. Moreover, software-based solutions are not fast enough for real-time malware detection in safety-critical systems. In this paper, we investigate promising approaches for hardware-assisted malware detection using machine learning. Specifically, we explore how machine learning can be effective for malware detection utilizing hardware performance counters, embedded trace buffer as well as on-chip network traffic analysis. 
    more » « less